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A study is made of the wind-driven circulation of a two-layer ocean within asquare 
basin, with a view to describing the observed separation of western boundary 
currents. The lower layer is allowed to surface and the line along which the upper- 
layer depth vanishes is interpreted as the region of the surfacing thermocline. 
For a representative wind stress the theory predicts the gross features of the Gulf 
Stream flow, the region adjacent to the surfacing line containing the separated 
boundary current. By assuming that the effects of friction and inertia are con- 
fined to regions of a boundary-layer character, the position of a separated current 
is shown to depend only on the degree of stratification and certain integral 
properties of the applied wind stress. 

1. Introduction 
Since the pioneering work of Stommel(l948) it has been established that the 

intense western boundary currents found in the major ocean basins of the world 
are due to the variation of the earth’s Coriolis parameter with latitude. An 
important feature of the real circulation that has not been adequately accounted 
for is the observed separation of the western boundary current from its coast 
of origin and its continued preservation as a concentrated stream. A well-known 
example of this phenomenon is afforded by the Gulf Stream in the North Atlantic 
Ocean. After its formation in the Gulf of Mexico and its passage through the 
Florida Straits, the Gulf Stream leaves the American coast at Cape Hatteras 
and follows roughly a north-easterly course. On reaching central ocean regions 
it finally breaks up into a complicated system of multiple streams known collec- 
tively as the North Atlantic Current. 

The ideas that have been advanced to explain the separation phenomenon 
have proceeded along two more or less independent lines. The f i s t  approach (see, 
for example, Greenspan (1962) or Carrier & Robinson (1962)) deals with a 
predominantly inertial western boundary current, and the prediction of separa- 
tion rests upon the basic hypothesis that this inertial layer can be joined smoothly 
to the interior flow. Thus in regions of outflow from the boundary current, where 
it is not possible to join the two regions of flow, it is deduced that the boundary 
current must have separated prior to entering these regions. The flaw in this 
argument lies in the assumption that the gross effects of even the smallest friction 
can be neglected. Neither in the numerical solutions of Veronis (1966), which 
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include frictional and inertial effects, nor in the analytical solutions of Moore 
(1963) is a separation of the boundary current suggested. Bryan (1963) has even 
investigated the effect of an abrupt discontinuity in the western coast but found 
that the boundary current had no inclination to permanently separate. In  regions 
where the inertial model would predict the non-existence of a boundary current, 
these studies show fairly conclusively that a matching between the inertial layer 
and the interior flow is obtained through a complicated intermediate region in 
which friction is dominant. For a full discussion of the role of friction in the wind- 
driven ocean circulation the reader is referred to Stewart (1964, pp. 3-9). 

The second approach, due to Morgan (1956), again deals with an inertial model 
of the boundary current, but the mechanism of separation is this time indepen- 
dent of the neglect of friction. Morgan considers a two-layer system with fluid 
of different density in each layer. He h d s  that it is possible for the depth of the 
upper layer at the western coast to vanish so that a separation of the upper layer 
fluid is forced. The suggestion here that the separation mechanism is that of 
opposing pressure gradients due to density stratification brings to mind the fact 
that the thermocline, usually defined by the depth of the 10 "C isotherm, does 
indeed surface abruptly in the real ocean on the shoreward edge of the separated 
current. However, since Morgan is primarily concerned with the Gulf Stream 
formation he does not proceed to examine the implications of his result. 

The present investigation is an attempt to push the two-layer model to its 
logical conclusion in connexion with the separation problem. Thus the lower 
layer is allowed to surface and the corresponding line along which the upper 
layer depth vanishes is interpreted as the region of the surfacing thermocline. 
Then it is possible to describe in simple terms the manner in which a separated 
boundary current depends upon the physical parameters of the model. Through- 
out the analysis the important effects of friction are included. 

In  $ 2 the basic assumptions of the model are displayed and the equations of 
motion set up. Some preliminary solutions are derived in $ 3  for the case of a non- 
surfacing lower layer. These solutions are examined in $ 4 to give an indication 
of where, and under what conditions, a surfacing lower layer is likely to occur. 
Section 5 deals with the full problem of surfacing. The region of the upper layer 
adjacent to the surfacing line is of a boundary-layer character and contains the 
separated boundary current. Illustrative solutions are obtained for a model of 
the North Atlantic circulation. These solutions are derived only for cases in 
which the inertial terms are negligible. However, it is shown in 8 6 by general 
vorticity arguments that the position of a separated boundary current is insensi- 
tive to the effects of friction and inertia, being primarily a function of certain 
gross properties of the wind stress. 

2. Basic equations 
We consider the steady wind-driven ocean circulation within a square basin. 

Take the origin of a Cartesian co-ordinate system at the south-west corner of the 
basin with the x axis directed eastward and the y axis northward. The sides of 
the basin are at x = 0, L and y = 0, L. 
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The effects of density stratification are modelled in terms of a two-layer 
system, the upper and lower layers of uniform density po and p1 respectively. In 
order to be as realistic as possible the interface is placed at about the depth of the 
thermocline so that the lower layer is essentially much deeper than the upper 
layer. 

The principal assumptions that we make are as follows: (i) pressure is hydro- 
static; (ii) the lower-layer fluid is inert; (iii) the effect of friction is reproduced by 
an interfacial drag proportional to the velocity; (iv) the horizontal components 
of velocity in the upper layer are uniform with depth. 

Then the two-dimensional and incompressible vertically integrated equations 
of motion and continuity for the upper-layer fluid are written as 

D(U.V)U+fA.h = -g'DVD+T/po-KU, (2.1) 

V(DU) = 0, (2.2) 

where u = (u, v) is the horizontal velocity vector in the (5, y) frame, T = ( T ~ ,  T ~ )  

is the wind-stress vector, f = Coriolis parameter of the earth, g' = g( 1 -po/p,) is 
an effective acceleration due to gravity, g = actual acceleration due to gravity, 
K = drag coe%cient. 

In  the absence of the inertial terms the last of the above assumptions is not 
necessary, so long as Du and Dv in these equations are interpreted as vertically 
integrated components of horizontal volume transport. 

A linearization of (2.1) and (2.2) produces the model studied originally by 
Stommel (1948). Of particular interest in the present study is the effect of the 
non-linear pressure term. 

In  accordance with the usual B plane approximation the Coriolis parameter is 
linearized about the central latitude of the basin, 19, say. Thus, if S2 is the angular 
velocity of the earth's rotation and R is the earth's radius, 

f = 2~[sin8,,+cos8,(2y- L)/2R]. (2.3) 

To be precise, we suppose that the ocean basin is in the northern hemisphere so 
that f is everywhere positive in the region of interest. 

It is convenient at this stage to introduce a dimensionless primed notation 
in terms of parameters which are characteristic of the motion. First, the indepen- 
dent variables are transformed by 

x = L x ' ,  y = W .  (2-4) 

Then the Coriolis parameter may be written as 

where 
f = LPf', f '  =fo+y', 

0 = 2R cos 8,/R, 

fo = R tan O0/L - 0.5. (2.7) 

For the remaining variables let 

33 
T = WT', D = dD', u = (g'd/L2/3)u, (2.8) 
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where W is a typical wind stress and d is the mean depth of the upper layer such 
that, if V is the total volume of fluid in this layer, 

d = v p .  (2-9) 

The choice of scaling of the velocity vector assumes a balance between the 
pressure, Coriolis and wind-stress terms in the ocean interior. 

In the work to follow the primes attached to dimensionless variables will be 
dropped. Equations (2.1) and (2.2) now become 

R,D(U.V)U+fADU = -DVD+AT-EU, (2.10) 

V .  (Du) = 0, (2.11) 

where the physical parameters which describe the system are incorporated in 
the three dimensionless numbers 

R, = g'd/L4/P, E = R/BLd, h = LW/g'pod2. (2.12) 

The number E is a dissipation coefficient and R, is interpreted as a Rossby 
number. It is difficult to assign meaningful values to these numbers since it is 
not known in exactly what sense the above model approximates to the rea 
ocean. However, if the real ocean is governed by the dynamics of this simplified 
model it is necessary that both R, and E be small. 

The importance of the wind stress is measured by the number A, which is in 
general of order unity. It is clear that the principal role of the inert lower layer 
is to emphasize the effect of the wind stress through the reduced upper-layer 
gravity g'. 

It is useful to integrate the continuity equation in terms of a stream function 
for the transport in the upper layer: 

DU = -a$lay, DV = a$lax. (2.13) 

Then the boundary conditions to be satisfied are: 

$ = 0 at rigid boundaries, (2.14) 

and, if the lower layer surfaces anywhere within the basin, 

$ = constant at D ( z , y )  = 0. (2.15) 

There is one final condition to be satisfied to complete the statement of the 
problem. From the depth scaling defined in (2.10) and (2.11) the dimensionless 
volume of the upper layer is unity. Since this value must be conserved for any 
choice of external parameters or forcing term one demands that 

1 = j j D ( x ,  9) d x d y ,  (2.16) 

where the integration is taken over the total free surface area of the upper layer. 
Throughout most of the work to follow we consider only zonal wind stresses 

(2.17) of the form 

This simplification will not affect the principal conclusions of the study. 

= = E7,(9), 01. 
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3. Solutions for non-surfacing lower layer 
Before considering the problem of a fully developed surfacing lower layer we 

give a brief derivation of some solutions that are valid in the absence of any 
surfacing. An examination of how and where these solutions first break down 
will give an indication of how the position of the surfacing region depends on 
the wind stress. 

For any given dimensionless stress function r,(y) one expects that when the 
amplitude A, as defined in (2.12), is sufficiently large the lower layer will be 
forced to surface somewhere within the basin. Since the case h = 0 corresponds 
to the trivial solution D = 1, there will always exist, for each choice of wind stress, 
a positive maximum value h = A, such that for all solutions with 0 < h < A, the 
upper-layer depth nowhere vanishes. Accordingly, we suppose for the moment 
that h satisfies this inequality. 

If the Rossby number is sufficiently small the inertial terms in the momentum 
equations (2.10) may be neglected. Then we obtain 

where the velocity components have been eliminated in favour of the stream 
function defined in (2.13). The boundary conditions are 

$ =  0 a t  x = O , 1  and y = O , l .  (3.3) 

This system of equations with the assumption of a non-surfacing lower layer 
is similar to the model studied by Welander (1966). Since e is a small parameter 
an approximate solution can be obtained by the method of singular perturbations. 

Except in certain boundary-layer regions the effect of the frictional terms is 
small and may be neglected. The only physically acceptable place for a boundary 
layer is at  the western coast (Stewart 1964). Then the inviscid solution for the 
ocean interior which satisfies the condition (3.3) at the eastern coast is found to be 

$ = A( 1 - x) dr,/dy, (3.4) 

D2 = h2+ 2h( 1 - x)f'd(r,/f)/dy, (3.5) 

where h is a constant to be determined and is identified as the depth of the upper 
layer a t  the eastern coast. We make the usual assumption that drz/dy is of one 
sign everywhere within the basin and that it is zero at the northern and southern 
boundaries, so that the conditions (3.3) at these boundaries are automatically 
satisfied. 

Since the value of the interior stream function (3.4) at the western coast is in 
general non-zero it is necessary to include the frictional terms in our discussion. 
Let this value at the western coast be $l(y) and the corresponding depth be 
D,(y). A scaling analysis at  the western coast suggests a boundary-layer thickness 

33-2 
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of order E .  The relevant boundary-layer equations are then 

a@ a~ € a @  
aY ay D ax’ 

- f -  = - D  _ _ - -  
with the boundary conditions 

(3.7) 

+ = 0 at x = 0, +-+$l (y)  as x-too. (3.8) 

9 = (D2--:)/2f, (3.9) 

Integration of the geostrophic relation (3.6) gives immediately 

where Do(y) is the upper-layer depth at  the western coast due to the boundary 
layer. Thus Do can be calculated from the condition of geostrophy and a know- 
ledge of the interior solution alone, because the matching condition of (3.8) 
when applied to (3.9) supplies 

which may be written as 
D: = Dt-  2f@1, 

Dg = h2 - 2 h X .  (3.10) 

The second momentum equation is now employed to complete the boundary- 
layer solution. Elimination of the stream function between (3.7) and (3.9) yields 
the following equation for D :  

2s a q a x  + 02 = D;. (3.11) 

In terms of a stretched boundary-layer co-ordinate 7 = xD1/s, the required 
solution is 

D = Dl( 1 - B e-v) / (  1 + B e-q) ,  (3.12) 

where B = (Dl - Do)/(Dl + Do). The corresponding solution for 9 is obtained 
from the geostrophic relation (3.9). 

Lastly, the value of h is fixed by the conservation condition (2.16). Then, for 
a given dimensionless wind stress, h is a function of the parameters h and e. But 
the error involved in neglecting contributions to this integral from the boundary 
layer is at most of order e. Therefore, to the same accuracy that the above solu- 
tions are correct, h may be regarded as a function of h only. 

The principal feature of the above solutions is the intense crowding of the 
streamlines and depth contours towards the western coast. The sense of the 
circulation is anticlockwise for a cyclonic wind (drx/dy < 0 ) ,  and clockwise for 
an anticyclonic wind (dr,/dy > 0) .  

4. The minimum depth 
The preceding analysis is valid provided that the upper-layer depth vanishes 

nowhere within the basin. It is therefore relevant to ask where does the minimum 
upper-layer depth occur for any particular wind stress and what is the critical 
value A, for which this minimum depth is just zero. In order to gain a feeling for 
the problem two special cases are considered. 
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Case (a ) :  an anticyclonic wind 

Suppose that the wind stress is defined by 
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7,(y) = - cos ny. (4.1) 

This stress exerts a negative vorticity tendency upon the ocean and approximates 
fairly well to the observed stress pattern over the North Atlantic Ocean, with 
the westerly winds over the poleward half of the basin and the easterly winds 
above the equator. 

If this function is substituted into the interior solution (3.5) for D, one sees 
that a minimum depth is attained at the north-west corner of the basin, where 
it has the value Dl(l). It remains to find whether there exists any point in the 
western boundary layer with depth less than this. Prom the boundary-layer 
solution (3.12) it is readily shown that D is an increasing function of 2, which 
implies that the minimum depth inside the boundary layer is at some point of 
the western coast itself. Then the result (3.10) asserts that the depth Do at the 
western coast is smallest a t  y = 1, at which point it is identical with D,. Therefore 
the upper layer depth attains an absolute minimum at the north-west corner 
of the basin, with the value 

So the analysis of the preceding section is valid provided that A < A,, where A, is 
the smallest root of the equation 

Dmi, = (h2- 24.t.  (4.2) 

h2(A)-2h = 0. (4.3) 

The dependence of h upon the dimensionless wind-stress amplitude h has been 
calculated numerically from the conservation condition (2.16). Figure 1 shows 
graphs of both h and Dmin as functions of A. The minimum upper-layer depth 
steadily decreases with increasing amplitude until it finally vanishes at the 
approximate critical value A, = 0.26. One would expect that if the amplitude 
were increased beyond this critical value a line of surfacing would advance from 
the north-west corner of the basin and sever the contact of the upper-layer fluid 
with the neighbouring coast. If this is the case, the position of the resulting sur- 
facing line might bear some resemblance to the observed position of the surfacing 
thermocline in the North Atlantic Ocean. This possibility will be investigated 
presently. 

Case (ti) : a cyclonic wind 
In contrast with the previous example, suppose that the basin is subjected to 
the stress 

Then the wind imparts positive vorticity to the ocean. 
It may be easily verified that the minimum upper-layer depth occurs on the 

central latitude of the basin at a point just outside the western boundary layer. 
Its value is 

7,(y) = + cos 7ry. (4.4) 

Dmin = (h2- 2nh)). (4.5) 

Again, the conservation condition has been used to determine the dependence 
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of h upon A. It is found that h increases with h according to an approximate linear 
law, forecasting a vanishing of the minimum upper-layer depth at the critical 
amplitude A, = 0-25. This is almost identical with the critical value for the anti- 
cyclonic wind of case (a).  

h 

FIGURE 1. Layer depth at eastern coast and minimum layer depth as functions 
of amplitude. Surfacing occurs at critical amplitude A,. 

However, a comparison of these two examples indicates a significant difference 
in the effects of a wind stress with negative curl and one with positive curl. In  
each case the critical point of surfacing is on the western side of the basin, but 
the position tends to be farther south in the case of a wind stress with positive 
curl. In the particular example cited the surfacing occurs at a latitude where the 
boundary current would normally be a t  its strongest. An interruption of the flow 
in this region would tend to inhibit the formation of a well-defined boundary 
current. 

In short, these preliminary results indicate that a cyclonic wind tends to 
disrupt the boundary current whereas an anticyclonic wind, associated with a 
more northerly position of surfacing, might divert the current from the coast. 
Since both the Atlantic and Pacific Oceans are indeed subjected to anticyclonic 
stress systems, and since they both exhibit pronounced western boundary 
currents and separated streams, a study of anticyclonic wind stresses would 
seem to be more appropriate. 

We now seek conditions on the stress that are sufficient to ensure a critical 
point of surfacing in the north-west corner of the basin. The following conditions 
are found to satisfy our requirements: 

(i) d.r,/dy > O in 0 < y < 1, 

(ii) ~ ~ ( 1 )  > 0. 
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Consider first the interior solution (3.5) for D. When y takes the value unity, 
for any x, the first term is of course a constant for fixed A, and the second term 
is a minimum by condition (i) of (4.6) and the original assumption that d7,/dy is 
zero at the northern boundary. Therefore 

Dkin = h2- 2 4  1 - x) Tz( 1) 

for some value of x. It follows from condition (ii) that this value of x is zero. By an 
argument similar to that of case (a) above it may be verified that there exists no 
point in the boundary layer with depth less than this. 

The result follows that, if the wind stress satisfies the conditions (4.6), the 
upper-layer depth first surfaces in the north-west corner of the basin when A = A,, 
where A, is the smallest root of 

(4.7) h2(A) - 2AT,(1) = 0. 

5. The separated current 
In  accordance with the remarks of the previous section we consider only those 

stress functions which satisfy the conditions (4.6). The type of circulation that 
we envisage is then as follows. Owing to the negative wind-stress curl the sense 
of the circulation will be clockwise. Apart from the region of surfacing, which 
we expect to be confined to the north-west corner of the basin, the fluid every- 
where in the ocean interior will drift slowly southward. There is no reason to 
suppose that the presence of a surfacing lower layer to the north will prevent the 
normal formation of a boundary current along the southern part of the western 
coast. This current will flow northwards until it approaches the region of vanishing 
upper-layer depth. Up to this point the boundary-layer solutions of $ 3  will 
remain valid. 

The demand for continuity will then force the current to separate from the 
coast. Large depth gradients are expected normal to the surfacing line; thus, if 
the surfacing line is sufficiently well behaved (ideally one hopes that it will be 
inclined roughly towards the north-east), these gradients will provide the geo- 
strophic balance necessary for maintaining an intense separated current and its 
integrity will be preserved. This current will flow on a course adjacent to the 
surfacing line and will be responsible for returning the fluid to the ocean interior. 
Indeed, a boundary layer of some kind is unavoidable in the region of surfacing, 
because the interior flow will not in general satisfy the boundary conditions 
a t  the surfacing line. 

We proceed to derive the boundary-layer equations for the separated current. 
Introduce orthogonal co-ordinates ( r ,  s) in the separated layer with T measured 
along the inward normal to the surfacing line and s measured intrinsically along 
this curve in the direction of the flow. The equation of the surfacing line, x = X(y) 
say, is yet to be determined. If the curvature of the surfacing line is small the 
co-ordinate system ( r ,  8 )  is, locally, approximately Cartesian. Let the velocity 
components in this frame be ( U ,  V ) .  

In order to illustrate the insensitivity of the position of the surfacing line to 
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the internal dynamics of the boundary layer, the inertial terms are included 
in our discussion. On making the usual boundary-layer approximations to the 
momentum equations (2.10), one obtains, for the separated layer, 

aD 
ar ’ 

-fDV = -D-  

aD +fDU = - D -  -sV+A7,, 
as 

where rs is the component of rX in the direction of the local s axis. In  these new 
co-ordinates the stream function is defined by 

DU = - a@las, DV = a+/ar, (5.3) 

and the boundary conditions are 

D = O  a t  r = 0 ,  (5.4) 

D + D,(s), @ +  @l(s) as r-+ a. (5.5) 

The functions @l and Dl are given by the interior solutions (3.4) and (3.5) at 
x = X(y) and are not known explicitly until the function X(y) is fixed. 

The boundary condition (5.4) together with the definition of the stream 
function imply that @ is constant at r = 0;  that is, the surfacing line is a stream- 
line. This constant may be equated to zero if the streamline is identified as that 
one which originates from the basin perimeter. (Strictly, this should be regarded 
as an assumption to be justified a posteriori.) Then the geostrophic relation (5.1) 
integrates to 

On applying the matching conditions (5.5) and using the interior solutions (3.4) 
and (3.5), one obtains 

@ = D2/2f. (5.6) 

d7, h2 
dY 2f 

A(1-x)- at z=X(y) .  

This gives the following equation for the line of surfacing : 

We are now in a position to study the precise implications of the wind-stress 
conditions (4.6) that we have assumed. First, it is evident from the form of X(y) 
above that a surfacing line can appear within the basin only in regions of positive 
rx. The conditions (4.6) assert that just one such region exists and that it is 
confined exclusively to the northern end of the basin. Secondly, since the wind- 
stress curl is negative, the gradient dy/dx of the surfacing line is positive, im- 
plying that the separated current is always inclined roughly towards the north- 
east. These two conclusions confirm our original expectation that the surfacing 
line separates the upper-layer fluid from the north-west corner of the basin. 

The perimeter of the upper layer is now known to within the function h(h), 
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which may be computed for any particular choice of wind stress from the con- 
servation condition (2.16). Again, it is consistent to neglect contributions from 
the boundary layers when working with this condition. Thus our knowledge of 
the function h can be extended to values of the wind-stress amplitude greater 
than the critical value A,. 

Computations have been performed for the special case T, = - cosny that 
was studied in $ 4  in connexion with the North Atlantic circulation. The com- 
pleted graph of h against h is illustratedin figure 2. Some possible lines of surfacing 
are depicted in figure 3 for various values of the wind-stress amplitude. 

0.0 0.4 0.6 0.8 1.0 

h 

FIGURE 2. Layer depth at eastern coast against amplitude. 
Dependence extended beyond critical amplitude A,. 

FIG~LE 
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The functions P1(s) and Dl(s) are now calculated to obtain 

The fact that all these results have been derived without reference to the 
second momentum equation stresses both the power of the geostrophic relation 
and the insensitivity of the surfacing position to the dynamics of the boundary 
layer. Moreover, since the functions $1 and D, which appear in the boundary 
conditions (5.5) are known, the boundary-layer problem posed in the system 
(5 .2 )  to (5 .6 )  is completely isolated. 

The fundamental equation for the separated boundary current is derived by 
eliminating the dependent variables in the momentum equation (5.2) in favour 
of the depth D. Then one obtains after some manipulation 

(5.9) 

where f‘ is the derivative with respect to s of the Coriolis parameter and J is 
the two-dimensional Jacobian operator. Consistent with the assumption that the 
curvature of the surfacing line is small, the function f‘ is locally constant. 

It is not possible to solve this equation in complete generality, so, instead, 
two special cases are considered. 

(a)  Purely frictional flow 
Suppose that the inertial terms are small in comparison with the frictional terms. 
Then, by neglecting those terms which involve the Rossby number, (5.9) reduces 
to 

2e aDpr +f‘D2 = j”D:. (5.10) 

In  terms of a stretched transverse co-ordinate, 7 = rf’Dl/e, the solution 
satisfying D = 0 at 7 = 0 is 

D = Dl( 1 - e-v) / (  1 + e-v), (5.11) 

and the corresponding stream function is given by the geostrophic relation (5.6). 
Thus the width of the separated current is of order s/f ID1, which is small every- 
where except towards the northern boundary of the basin where D, tends to 
zero and the current breaks up. 

This completes our analysis of the purely frictional circulation. The boundary- 
layer solutions for the separated current may be combined with the coastal and 
interior solutions of 5 3 to obtain uniformly valid results. 

As a numerical example the usual function - cos ry is chosen to describe the 
zonal wind stress. Some results are depicted in figure 4, which shows contour 
lines of the stream function. The numerical values E = 0.03 and h/h2 = 1 were 
chosen as being illustrative, the latter corresponding to the values h = 0.45, 

A comparison of figure 4 with charts of the observed North Atlantic circulation 
(see, for example, Stommel 1965) shows good qualitative agreement, particularly 

h = 0-67. 
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in the orientation of the separated current and in the gross features of the return 
flow. On referring to the definition of the dimensionless stress amplitude in (2.12) 
and assuming the typical values L = 6 x 108 cm, d = 3 x lo4 cm, g' = 2 cm secc2, 
the above value of h corresponds to a dimensional amplitude W = 1-35. The 
discrepancy between this and the more realistic value of unity must be ascribed 
to the physical simplicity of the model. 

I I I I I 
FIGURE 4. Contour lines of stream function for upper-layer transport 

when E = 0.03, h = 0.45. 

( b )  Purely inertial $ow 

We now investigate the possibility of an inertially controlled separated current. 
Amongst the purely inertial solutions that (5.9) may possess, attention is con- 
fined to those which possess a similarity form. It may be expected that such 
solutions will be relevant sufficiently far away from the influence of initial con- 
ditions a t  the point of separation. 

We write the dependent variable in the form 

D = W ) P ( V h  (5.12) 

where q is a scaled similarity variable defined by g = rG(s)/4(2R8) and P, G are 
functions to be determined. The boundary conditions in terms of the similarity 
function become 

P(0)  = 0, P(m) = 1. (5.13) 

The following analysis demonstrates that no such solutions exist subject to these 
conditions. 

If the similarity form is substituted into (5.9) with the frictional terms neg- 
lected, the equation for P takes the form 

(5.14) aP2P" - bPP'2 - P2 + 1 = 0, 
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where, for a similarity solution to exist, a and b must be constants which satisfy 
the relations 

a = - - - (  G 2 d  D, ) 
dfdY y'f ' 

(5.15) 

For the solution to exhibit the correct behaviour for large 7 we must have 
asymptotically 

P(7)  = 1 +p(7) ,  (5.16) 

where p decays at least exponentially. After substituting this expansion into 
(5.15) and retaining only linear terms, 

ap" - 2p = 0, (5.17) 

from which it follows that a must be positive definite. 
But, by the condition of geostrophy across the current and by the first of the 

relations (5.15), positive a implies that d$,/dy is also positive, which in turn 
implies that the separated current is gaining fluid from the ocean interior. This 
is in contradiction with the demand that the separated current be responsible for 
returning fluid to the ocean interior. One concludes that there exist no purely 
inertial similarity solutions satisfying the physical conditions of the problem. 

It should be noted that this result for the separated current is in accord with 
the results of Greenspan (1962) and Pedlosky (1965) in their analyses of the 
inertial western boundary current attached to the coast. The correct interpreta- 
tion of the result is that frictional effects cannot be neglected in the region of 
return flow. 

6. General discussion of separated current 
The analysis of the previous section demonstrates that the position of the 

separated boundary current can be calculated without actually considering its 
internal dynamics. This suggests that it should be possible to extract from the 
primitive equations important information about the region of surfacing without 
specifying precisely the mechanism by which the interior flow is closed. 

Since we are interested primarily in the Gulf Stream problem we suppose that 
the wind stress is such that the separated current cuts across the north-west 
corner of the basin. Thus we avoid the more complicated situation of the totally 
internal region of surfacing, such as that predicted in case (b )  of $4. We know 
from the previous discussion that, for a stress which is purely zonal, independent 
of longitude, and which satisfies the sufficiency conditions (4.6), our requirement 
on the separated current is satisfied. Otherwise, the results will have to be tested 
for consistency a posteriori. 

The formulation of the boundary-layer problems that we have discussed suffer 
from the basic objection that they do not accurately account for the physical 
processes of friction and inertia. The generality of the present discussion allows 
us to account for these effects in the momentum equations as precisely as we 
please, in terms of a single vector, L say. Then L may include the  higher-order 
processes of lateral diffusion as well as those of internal friction and inertia. We 
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assume that L is negligibly small everywhere except in certain narrow boundary- 
layer regions. For this assumption to be realistic it is necessary that the effects 
of inertia be not so great that they predominate over viscous effects (see Veronis 
(1966) and Stewart (1964)). 

For the purposes of our discussion we divide the boundary layers into two 
classes. Those of the first class contain intense currents, of singularly high velocity, 
which we assume are confined to regions immediately adjacent to the western 
coast and surfacing line. Those of the second class are purely viscous layers neces- 
sary merely to satisfy the real fluid boundary condition of no-slip at other 
coastal boundaries. 

At the same time, it may be argued that the forcing term AT is not realistic 
within the separated current, for example in regions of vanishing upper-layer 
depth. Thus we introduce a generalized forcing term, APT say, with the single 
restriction that P is unity in all regions exterior to the separated current. 

Note that none of these generalizations alters the dynamic balance in the 
ocean interior. The horizontal momentum equations for the upper-layer fluid 

(6.1) 
may now be written as AFT = fADu+DVD+L. 

We take the curl of this equation and integrate over some surface S which is 
bounded by a closed curve C lying entirely within the upper layer. This results in 
the following statement of the vorticity balance inside C: 

n.curl(Fz)dS = 

where n is a unit vector in the direction of the upward vertical, and the line 
integrals are taken round C in a positive sense. The f i s t  and second terms 
represent, respectively, the total rate of input of wind-induced vorticity over 
the surface S and the rate of convection of planetary vorticity across the bounding 
curve C. The last term includes viscous diffusion and non-linear convection of 
relative vorticity across C, and possibly the effects of frictional dissipation. 
If S lies entirely within the ocean interior this last term does not contribute to the 
vorticity balance. 

Now, suppose that the curve C enclosing the surface 8 is defined by the 
contour ABCD (see figure 5 ) ,  where AB and CD are lines of constant latitude, 
AD is adjacent to the surfacing line z = X(y) and liesentirely within the separated 
current, and BC lies just outside the viscous layer at  the eastern coast. Let 
A', B', C', D' be the corresponding intersections of the extended latitudinal lines 
AB, CD with the eastern coast and surfacing line. We consider the separate 
contributions of the two terms on the right-hand side of the vorticity equation 
(6.2). Although the interior flow cannot by itself satisfy the boundary condition 
of no slip at  the eastern coast, it satisfies the condition of zero normal velocity. 
Thus we obtain 
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Also, it follows from the above remarks that the visco-inertial term contributes 
only along the line AD. Therefore, by employing the momentum equation (6.1), 

$ L . d  = Id (AFT -f A Du) .dl- [+D2]$. 
1) 

(6-4) 

FIGURE 5. The contour C enclosing the surface S. 

Substitution of these results into the vorticity equation obtains 

Now let the points A ,  D tend to A', D' respectively. Then the right-hand side 
of (6.3) tends to @Jj"$, where @o is the constant value of the stream function at  
the surfacing line. (Note that this step is equivalent to assuming a geostrophic 
balance across the separated current.) By the original assumption that the 
streamline a t  the surfacing line originates from the basin perimeter, $, is zero. 
Therefore, since the replacement of B, C by B ,  C' in (6.5) incurs an error whose 
magnitude is no greater than the viscous boundary-layer thickness, we have 

Finally, this equation is true for any pair of latitudinal lines A'B', C'D' that 
make real intersections with the surfacing line, and is also independent of the 
mechanisms of viscosity and inertia. Thus, without loss of generality, (6.6) may 
be expressed as 

where, for a given wind stress, k is some function of amplitude only. This last 
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identity formally determines the equation of the surfacing line to within the 
arbitrary function k(h), which can be fixed by a consideration of the interior 
flow. 

For the special case T = (T,(Y), 0) ,  (6.7) reduces to the form 

X(Y) = 1 - W)/7,, (6.8) 

which is in agreement with the result (5.7) obtained by matching techniques. 
The important conclusion that we draw from the analysis of this section may 

be summarized as follows. If the effects of friction and inertia are confined to 
narrow regions of a boundary-layer character, then the surfacing line can be 
deduced from the condition of geostrophy and a knowledge of the interior flow 
alone. Thus, if 9, and D, denote the solutions for the stream function and depth 
in the ocean interior, the position of the separated boundary current is formally 
determined by the identity @I = D32f, subject to appropriate conditions of 
consistency. 

7. Conclusions 
It has been shown that the two-layer model is capable of describing a separated 

boundary current. For a wind-stress function representative of conditions in the 
North Atlantic Ocean the theory predicts a circulation whose gross features are 
in good agreement with observation. Although the effects of friction and inertia 
are of critical importance within the separated current, they are of secondary 
importance in determining its position, the primary influence being the applied 
wind stress. 

The present two-layer treatment lacks certain qualities of sophistication, but 
nevertheless includes the basic physical processes of the wind-driven ocean circu- 
lation, at the same time allowing ;t relatively simple analysis. The fundamental 
dependence of the position of the separated current on the applied wind stress 
suggests a degree of generality in the results, which should carry over to more 
complex models that include the non-linear effects of a continuous stratification. 

The interesting case of the totally internal region of surfacing that is predicted 
for certain cyclonic wind systems requires further examination. It is intended 
to make this the subject of a future paper. 

This work originally formed part of a doctoral thesis written at  the University 
of Bristol while the author held a D.S.I.R. studentship. 
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